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Abstract. The Angular Momentum Projected Generator Coordinate Method, with the quadrupole moment
as collective coordinate and the Gogny force (D1S) as the effective interaction, is used to describe the
properties of the ground state and low-lying excited states of the even-even neon isotopes 20–34Ne, that
is, from the stability valley up to the drip line. It is found that the ground state of the N = 20 nucleus
30Ne is deformed but to a lesser extent than the N = 20 isotope of the magnesium. In the calculations, the
isotope 32Ne is at the drip line in good agreement with other theoretical predictions. On the other hand,
rather good agreement with experimental data for many observables is obtained.

PACS. 21.60.Jz Hartree-Fock and random-phase approximation – 21.60.-n Nuclear-structure models and
methods – 21.10.Re Collective levels – 21.10.Ky Electromagnetic moments

1 Introduction

The properties of the ground and lowest-lying excited
states of nuclei close to the stability valley are de-
termined to a great extent by the underlying mean
field in which all the nucleons move. The nuclear mean
field, obtained through the mean-field approximation
to the nuclear many-body problem, provides the im-
portant concepts of magic numbers (or shell closures)
and that of spontaneous symmetry breaking. For nuclei
with proton and/or neutron numbers close to the magic
ones symmetry-conserving (i.e. non-superconducting and
spherical) ground states are expected. On the other hand,
nuclei away from the magic configurations are expected
to show strong symmetry breaking at the mean-field level
leading to deformed (and superconducting) ground states
which are the heads of bands generated kinematically by
restoring the broken symmetries —like the well-known ex-
ample of the rotational bands.

Almost thirty years ago, experimental evidences were
found in the neutron-rich light nuclei around 31Na [1,2]
pointing to the breaking of the N = 20 magic number.
The first attempt to understand the phenomenon from a
theoretical point of view [3] suggested that correlations
beyond the mean field coming from the restoration of
the rotational symmetry could be strong enough as to
overcome the mean-field shell effects and lead to deformed
ground states for closed-shell nuclei like 31Na and 32Mg.
Further theoretical studies using the Shell Model (SM)
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approach were carried out [4,5] and it was suggested
that an intruder configuration consisting of a two-particle
two-hole neutron excitation from the sd shell into the
f7/2 one was the responsible for the deformation in the
ground state of 32Mg.

The recent availability of Radioactive Ion Beam fa-
cilities in several laboratories like Ganil, GSI, MSU and
Riken to cite a few and the development of very efficient
mass separators and solid-state detectors has made possi-
ble to measure up many properties concerning the ground
state and the lowest-lying excited states of many exotic,
neutron-rich light nuclei. In particular, the exploration of
both the N = 20 and N = 28 shell closures far from
stability has proven to be a rich source of new phenom-
ena. Among the variety of available experimental data, the
most convincing evidence for a deformed ground state in
the region around N = 20 is found in the 32Mg nucleus,
where both the excitation energies of the lowest-lying
2+ [6] and 4+ [7] states and theB(E2, 0+ → 2+) transition
probability [8] have been measured. The low excitation en-
ergy of the 2+ state, the high value of the B(E2) transi-
tion probability and also the ratio E(4+

1 )/E(2+
1 ) = 2.6

are fairly compatible with the expectations for a rota-
tional band. Additional evidence comes from the neigh-
boring isotope 34Mg, where the E(2+

1 ) is only 0.66 MeV,
the B(E2, 0+ → 2+) is 631 e2fm2 and the E(4+

1 )/E(2+
1 )

ratio is 3.2, that is, the 0+
1 , 2

+
1 and 4+

1 satisfy all the re-
quirements to belong to a strongly deformed rotational
band [9,10].
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From a theoretical point of view, the ground state of
32Mg is spherical at the mean-field level. However, when
the zero-point rotational energy correction (ZPRE) stem-
ming from the restoration of the rotational symmetry
is considered, the energy landscape as a function of the
quadrupole moment changes dramatically and 32Mg be-
comes deformed [3,11–14]. A more careful analysis of the
energy landscape including the ZPRE correction reveals
that, in fact, there are two coexistent configurations (pro-
late and oblate) with similar energies indicating thereby
that configuration mixing of states with different quad-
rupole intrinsic deformation has to be considered. There-
fore, an Angular Momentum Projected Generator Coordi-
nate Method (AMP-GCM) calculation with the quadru-
pole moment as collective coordinate is called for. We have
applied this method in ref. [15] to the study of the nuclei
30–34Mg with the Gogny force. We have obtained prolate
ground states for 32–34Mg indicating that the N = 20
shell closure is not preserved for the Mg isotopes. More-
over, a good agreement with the experimental data for
the 2+ excitation energies and B(E2) transition probabil-
ities was obtained. The method has been used to study
quadrupole collectivity of the Si isotopes [16], the N = 28
isotopes [17] as well as the superdeformed band in 32S [18]
with quite a good success.

The purpose of this paper is to extend the AMP-GCM
calculations to the study of the neon (two protons less than
magnesium) isotopes from A = 20 up to A = 34. Contrary
to the magnesium isotopic chain, the neon neutron drip
line (N = 22) is very close to the neutron magic number
N = 20 and therefore the study of the neon isotopes is a
good testing ground to examine both the systematic of de-
formation and the possible erosion of the N = 20 spherical
shell closure very close to the neutron drip line. Another
interesting point is the study of the possible magicity of
N = 16 suggested in recent analyses [19].

The paper is organized as follows: In sect. 2 a brief
overview of the theoretical framework is presented. In
sect. 3.1 the mean-field results are discussed. In the next
section the effect of angular momentum projection on the
mean-field observables is described. Finally, in sect. 3.3 the
results of the configuration mixing calculations are pre-
sented and compared to the experimental data and other
theoretical approaches. We end up with the conclusions in
sect. 4.

2 Theoretical framework

As mentioned in the introduction ours is a mean-field–
based procedure where the underlying mean field is deter-
mined first and then additional correlations beyond the
mean field are included. Those additional correlations are
handled in the framework of the Angular Momentum Pro-
jected Generator Coordinate Method (AMP-GCM) with
the mass quadrupole moment as generating coordinate. As
we restrict ourselves to axially symmetric configurations,
we use the following ansatz for the K = 0 AMP-GCM

wave functions,

∣∣ΦI
σ

〉
=

∫
dq20f

I
σ(q20)P̂ I

00 |ϕ(q20)〉 . (1)

For each angular momentum I the different AMP-GCM
states (labelled by σ) are linear combinations of the
set of angular momentum projected intrinsic wave func-
tions |ϕ(q20)〉 generated by solving the Hartree-Fock-
Bogoliubov (HFB) equation constrained to yield the
desired mass quadrupole moment q20 = 〈ϕ(q20)| z2 −
1/2(x2 + y2) |ϕ(q20)〉.

The intrinsic wave functions are restricted to be axially
symmetric (i.e. K = 0) and are obtained by solving the
HFB equation with the Gogny interaction [20] (D1S pa-
rameterization [21]). The HFB equation is discretized by
expanding the quasiparticle operators associated to the
intrinsic wave functions |ϕ(q20)〉 in a Harmonic-Oscillator
(HO) basis containing eleven major shells and with equal
oscillator lengths (in order to make the basis closed under
rotations [22]). As we are dealing with quite light systems
we have to consider the center-of-mass problem. This is
handled by subtracting the center-of-mass kinetic energy
both in the calculation of the energy and in the HFB vari-
ational procedure. Finally, concerning the Coulomb inter-
action, we have only taken into account its contribution to
the direct field in the variational procedure. The exchange
Coulomb energy (computed in the Slater approximation)
is added, in a perturbative fashion, at the end of the cal-
culation and the contribution of the Coulomb interaction
to the pairing energy is completely disregarded.

In order to obtain the angular momentum projected
wave functions we use the standard angular momentum
projector operator restricted to K = 0 states [23],

P̂ I
00 =

(2I + 1)
8π2

∫
dΩdI

00(β)e
−iαĴze−iβĴye−iγĴz . (2)

Finally, the “collective amplitudes” f I
σ(q20) as well as

the energies of the AMP-GCM states
∣∣ΦI

σ

〉
are obtained

through the solution of the Hill-Wheeler (HW) equation
∫
dq′20HI(q20, q

′
20)f

I
σ(q

′
20)=EI

σ

∫
dq′20N I(q20, q

′
20)f

I
σ(q

′
20)

(3)
which is given in terms of the projected norm

N I(q20, q
′
20) = 〈ϕ(q20)| P̂ I

00 |ϕ(q′20)〉 (4)

and the projected Hamiltonian kernel

HI(q20, q
′
20) = 〈ϕ(q20)| ĤP̂ I

00 |ϕ(q′20)〉 . (5)

As the generating states P̂ I
00 |ϕ(q20)〉 are not orthogo-

nal, the “collective amplitudes” f I
σ(q20) cannot be inter-

preted as probability amplitudes. Instead, one usually in-
troduce [24] the “collective” wave functions

gI
σ(q20) =

∫
dq′20f

I
σ(q

′
20)

(N I(q20, q
′
20)

∗)1/2
(6)
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Fig. 1. In panels a) and d) the ground-state HFB energies of 32,34Ne are plotted as functions of the HO length b0 (b⊥ = bz = b0)
for the Nshell = 8, 9, 10, 11, 12, 13 and 17 bases. The curve corresponding to the basis used in the present work (Nshell = 11) is
plotted as a dashed line. In panels b) and e) the HFB energies of 32,34Ne computed with b0 = 2.1 fm and Nshell = 11 (full line)
and Nshell = 12 (dashed line) are plotted as functions of the quadrupole moment. In panels c) and f), the energy differences
between Nshell = 11 and Nshell = 12 calculations are plotted as functions of the quadrupole moment.

which are orthonormal
∫
dq20g

I
σ
∗(q20)gI′

σ′(q20) = δI,I′δσ,σ′

and therefore their module squared has the meaning of a
probability.

In order to readjust the particle number on the average
for the projected wave functions the Hamiltonian in eq. (5)
has been replaced by Ĥ ′ = Ĥ −λn(N̂ −N0)−λp(Ẑ −Z0)
where λn and λp are chemical potential parameters (see
ref. [25], and references therein).

The B(E2) transition probabilities are computed using
the AMP-GCM wave functions

B(E2, Ii → If) =
e2

2Ii + 1
(7)

×
∣∣∣∣
∫

dq20dq′20f
If∗
σf

(q′20)〈Ifq′20 || Q̂2 || Iiq20〉f Ii
σi
(q20)

∣∣∣∣
2

with

〈Ifq′20 || Q̂2 || Iiq20〉
(2Ii + 1)(2If + 1)

=
∑

µ

(
Ii 2 If
−µ µ 0

)

×
∫ π

2

0

dβ sinβdIi
−µ,0(β)〈ϕ(q′20) | Q̂2µe

−iβĴy | ϕ(q20)〉 ,

where the indices i and f stand for the initial and final
states and Q̂2µ are the charge quadrupole moment op-
erators. As we are using the full configuration space no
effective charges are needed. Further details on the com-
putational procedure can be found in ref. [25].

3 Discussion of the results

3.1 Mean-field approximation

Before discussing the mean-field results, the conver-
gence of our calculations with the size of the Harmonic-
Oscillator (HO) basis used to discretize the HFB equation
has to be tested as we are dealing with near-drip-line nu-
clei like 32,34Ne. First, one should note that, due to the
proximity of the drip line, the full HFB approximation
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must be used [26,27]. It is also evident that absolute con-
vergence for the binding energies can only be attained
for HO basis with an infinity number of shells (Nshell).
However, it is expected that other physical observables
like excitation energies, transition probabilities, etc. can
be accurately described with a finite number of shells.

In order to determine how many shells are needed for
an accurate description of the physical observables we have
first studied the behavior of the HFB energy as a function
of the oscillator length parameter b0 (b⊥ = bz = b0) and
the number of shells for the nuclei 32Ne and 34Ne. The re-
sults are plotted in panels a) and d) of fig. 1. As expected
the curves become more and more flat for increasing val-
ues of Nshell and already the Nshell = 17 basis can be
considered as a good approximation for an infinite basis
in both isotopes as the dependence of the energies on the
oscillator length is very weak for a wide range of b0 val-
ues. However, Nshell = 17 makes the HO basis too big
for our purposes as we have to evaluate the AMP-GCM
Hamiltonian kernel which is a quantity requiring two or-
ders of magnitude more computing time than the whole
HFB calculation. We have found that Nshell = 11 is a
good compromise between accuracy and computing time
as the energy still shows a weak dependence on the oscil-
lator length around the minima located at b0 = 2.1 fm for
both 32Ne (panel a)) and 34Ne (panel d)). As an exam-
ple of the adequacy of the Nshell = 11 calculations let us
consider the two-neutron separation energy of 34Ne. The
Nshell = 17 ground-state energies for 32Ne and 34Ne are
403 keV and 420 keV lower than the Nshell = 11 energies
implying that the two-neutron separation energy of 34Ne
computed with Nshell = 11 differs by 17 keV from the one
computed with Nshell = 17.

In order to study the suitability of the Nshell = 11
basis for other nuclear properties we have performed cal-
culations with Nshell = 12. The mean-field results for both
calculations are compared on the right-hand side panels of
fig. 1. In panels b) and e) the energy landscapes of 32Ne
and 34Ne are shown as a function of the quadrupole mo-
ment for the Nshell = 11 and Nshell = 12 calculations. In
the upper panels c) and f) we have represented the energy
differences between both calculations. The conclusion is
that in the region −0.7 b ≤ q20 ≤ 1.2 b the shape of the
energy landscapes do not change much when the basis is
increased from Nshell = 11 to Nshell = 12. As we will see
later on, this is the range of q20 values where the collective
dynamics is concentrated and therefore it is not expected
to find significant differences between the Nshell = 11 and
Nshell = 12 results.

In fig. 2 the mean-field potential energy surfaces
(MFPES) are plotted as a function of the axially symmet-
ric quadrupole moment q20 for the even-even neon isotopes
20–34Ne. The MFPES shown do not include the Coulomb
exchange energy and they have been shifted to accommo-
date them in a single plot (see figure caption).

Both 20Ne and 22Ne are prolate deformed in their
ground states. In 20Ne the prolate ground state corre-
sponds to q20 = 0.4 b (β2 = 0.37) and an oblate local
minimum also appears at q20 = −0.1 b (β2 = −0.09) with
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Fig. 2. Mean-field potential energy surfaces for the considered
neon isotopes, plotted as a function of the axially symmetric
quadrupole moment. The curves have been shifted to show
them in a single plot. The corresponding energy shifts are given
in the plot.

an excitation energy of 1.71 MeV. In the case of 22Ne
the ground state corresponds to q20 = 0.5 b (β2 = 0.40)
and another local minimum is found at q20 = −0.2 b
(β2 = −0.17) with an excitation energy of 2.24 MeV. The
nucleus 24Ne is a clear example, in the considered isotopic
chain, of very strong shape coexistence since, while the
oblate ground state is locate at q20 = −0.3 b (β2 = −0.22),
a prolate isomeric state is also found at q20 = 0.2 b
(β2 = 0.15) with an excitation energy with respect to the
oblate ground state of 77 keV. On the other hand, the nu-
clei 26–30Ne show spherical ground states indicating that
the N = 20 shell closure is preserved at the mean-field
level. The MFPES of both 26,28Ne are particularly flat
around their spherical ground states. In the nucleus 30Ne
we obtain a prolate shoulder at q20 = 0.8 b (β2 = 0.37)
at an excitation energy of 2.70 MeV with respect to the
spherical ground state. This prolate shoulder is around
1 MeV higher than the one found in similar HFB calcu-
lations in 32Mg (see for example [15]). In the drip line
systems 32Ne and 34Ne, prolate deformed ground states
are found. The ground states have q20 = 0.6 b (β2 = 0.26)
and q20 = 0.8 b (β2 = 0.31), respectively. In addition, an
oblate isomeric state is found in 34Ne at q20 = −0.3 b
(β2 = −0.12) with an excitation energy of 2.39 MeV with
respect to the prolate ground state.

Another interesting point concerns the stability of the
Ne isotopes against neutron emission. From the absolute
minimum of the MFPES depicted in fig. 2 (the one of 30Ne
is marked with a horizontal line) it can be deduced that
32Ne is not stable against two-neutron emission. This is in
clear contradiction with the experimental results as they
indicate that 32Ne is indeed stable against two-neutron
emission [28–30]. On the other hand, the nucleus 34Ne is
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Fig. 3. In each panel, proton (thick full lines) and neutron
(thick dashed lines) particle-particle energies −Epp are de-
picted as a function of the quadrupole moment. Also the energy
differences EHFB(q20) − Eg.s., where Eg.s. corresponds to the
ground-state HFB configuration, are plotted as thin full lines.

slightly stable against two-neutron emission, but it is not
against four-neutron emission.

In fig. 3 the proton and neutron particle-particle cor-
relation energies −Epp = 1

2Tr (∆κ∗), which are com-
monly used to discuss pairing correlations (see for example
refs. [20,31]), are plotted as a function of the quadrupole
deformation for all the isotopes considered. The evolution
of the particle-particle correlation energies is well corre-
lated with the structures found in the MFPES. Non-zero
proton pairing correlations are found in all the spherical or
oblate minima. In addition, sizeable neutron pairing cor-
relations are found in 20,22Ne and 32,34Ne for the spherical
and the oblate minima. Vanishing proton pairing correla-
tions are found in the prolate side in a window starting
at 0.5 b and ending in 1.0 b in 20Ne. For the other iso-
topes the starting and ending points increase with the
neutron number. Neutron pairing correlations vanish in
the ground states of both 26Ne and 30Ne. In the later case
this is a consequence of the N = 20 shell closure found at
the mean-field level.

It should be stressed here that the unphysical collapse
of pairing correlations found in fig. 3 is an indication that
one should also consider in these isotopes dynamical pair-
ing correlations and their coupling to the quadrupole de-
gree of freedom in the scope of a formalism beyond the
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Fig. 4. Angular momentum projected potential energy sur-
faces (full lines) for the nuclei 20–34Ne and for the spin values
Iπ = 0+, 2+, 4+and 6+, plotted as a function of the axially
symmetric quadrupole moment q20. The mean-field potential
energy surfaces are also plotted as lines with boxes. In each
nucleus, the energies are referred to the energy of the Iπ = 0+

ground state. For the nuclei 32–34Ne we have also included
(dashed lines) the projected results corresponding to the cal-
culation with Nshell = 12.

mean field in order to treat them in an equal footing.
However, this multidimensional configuration mixing cal-
culation is a cumbersome task with the present-day com-
putational facilities.

3.2 Correlations beyond the mean field: angular
momentum projection

Before considering the full AMP-GCM, it is instructive
to look into the Angular Momentum Projected Energy
Surfaces (AMPPES) defined as

EI(q20) =
HI(q20, q20)
N I(q20, q20)

(8)

and shown in fig. 4 for the nuclei 20–34Ne and I = 0, 2,
4, and 6. The corresponding mean-field energy landscapes
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(lines with boxes) are also included for comparison. For
details on the missing points in the I = 2, 4 and 6 curves
refer to [25]. The most remarkable fact about fig. 4 is how
strongly the restoration of the rotational symmetry mod-
ifies the mean-field picture of the I = 0 configurations.
Contrary to the mean-field case, two minima, one prolate
and the other oblate, are obtained for all the neon isotopes
for Iπ = 0+. The prolate minimum is, with the exception
of 24Ne, the absolute minimum in all the isotopes consid-
ered. For increasing spin values either the energy differ-
ence between the prolate and oblate minima increases or
the oblate minimum is washed out.

The nucleus 24Ne, with its Iπ = 0+ oblate ground
state is the exception in all the neon isotopes studied.
The orbital responsible for such an oblate minimum is the
neutron d 5

2
orbital which becomes fully occupied in this

nucleus and favors oblate deformations. The absolute min-
imum remains oblate for Iπ = 2+ but already at Iπ = 4+

it becomes prolate deformed.
In addition, shape coexistence is expected in the nuclei

26Ne, 28Ne and 30Ne as their Iπ = 0+ prolate and oblate
minima are very close in energy (414, 577 and 936 keV, re-
spectively). These minima are separated by barriers which
are 2.4, 2.2 and 1.3 MeV high, respectively.

Finally, it is also worth comparing the intrinsic quad-
rupole deformation of the ground state of 30Ne with the
one of 32Mg [14]. In fig. 5 we have plotted the Iπ = 0+

and 2+ AMPPES for both 30Ne and 32Mg. From this plot
we conclude that the absolute minimum of the Iπ = 0+

AMPPES in 30Ne has half the deformation of the cor-
responding minimum in 32Mg. On the other hand, the
Iπ = 2+ deformations are practically identical. From this
results one may expect, as is the case, very similar spec-
troscopic quadrupole moments for the first 2+ states in
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Fig. 6. Band diagrams for the nuclei 20–34Ne obtained by solv-
ing the Hill-Wheeler equation of the AMP-GCM. The I = 0
AMPPES are also plotted to guide the eye. See text for further
details.

30Ne and 32Mg and a reduction of the B(E2) transition
probability in 30Ne as compared to the one of 32Mg.

3.3 Correlations beyond the mean field: angular
momentum projection and configuration mixing

The AMPPES of the previous subsection show for some
nuclei and/or some spin values the phenomenon of shape
coexistence and therefore configuration mixing has to be
considered in order to gain a better understanding of the
structure of these states. We have considered configuration
mixing in the framework of the Angular Momentum Pro-
jected Generator Coordinate Method (AMP-GCM) de-
scribed in sect. 2. The intrinsic axial quadrupole moment
q20 with values in the range −1.5 b ≤ q20 ≤ 2.5 b and with
a mesh size ∆q20 of 10 fm2 has been chosen as generating
coordinate.

In fig. 6 we have plotted the AMP-GCM energies
EI

σ obtained by solving the Hill-Wheeler equation and
placed them along the q20-axis according to their “average
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Fig. 7. Collective wave functions squared for the ground states (σ = 1) and the spin values Iπ = 0+, 2+, 4+and 6+ of the nuclei
20–34Ne. The corresponding projected energy curve is also plotted for each spin value. The y-axis scales are in energy units and
always span an energy interval of 13 MeV (minor ticks are 0.5 MeV apart). The collective wave functions have also been plotted
against the energy scale after proper scaling and shifting, that is, the quantity EI

σ +15× | gI
σ(q20) |2 is the one actually plotted.

With this choice of the scales we can read from the figure the energy gain due to quadrupole fluctuations by considering the
position of the wave functions’ tail relative to the projected curve.

intrinsic quadrupole moment” defined as

qI,σ
20 =

∫
dq20 | gI

σ(q20) |2 q20 . (9)

In this figure we have also plotted the Iπ = 0+

AMPPES to guide the eye. The first noticeable fact is that
the correlated 0+ ground states have a lower energy than
the absolute minimum of the corresponding AMPPES.
This energy gain due to the quadrupole correlations in-
creases the binding energies and can be relevant for a
proper description of the two-neutron separation energies.
The second prominent feature is that configuration mixing
decreases the deformation of the 0+

1 ground states with re-
spect to the minimum of the AMPPES. The ground states
of the nuclei 24Ne and 26Ne become spherical, whereas
the ones of 28Ne and 30Ne become weakly deformed. The
other nuclei remain well deformed in their ground states
and develop a rather well-defined rotational band up to
the maximum spin considered for σ = 1. In addition, a
well-defined rotational band is obtained for I ≥ 2 in 30Ne.
On the other hand, the excited states (σ = 2) only show
a rotational-band pattern for those nuclei well deformed
in their ground state. Another interesting point concerns
the energy gain due to configuration mixing of the ground
state: it is 0.6 MeV for 20Ne, increases up to 0.9 MeV for
24Ne and 26Ne and then monotonically decreases up to
0.55 MeV in 34Ne. The energy gain is correlated with the
shape of the AMPPES for I = 0, namely, if the AMPPES

shows a well-defined minimum the energy gain is smaller
than in the case where the minimum is broader.

To gain a deeper insight into the intrinsic structure
of the AMP-GCM states the ground-band (σ = 1) col-
lective wave functions squared | gI

σ(q20) |2 are plotted in
fig. 7 along with the corresponding AMPPES. For 20Ne
and 22Ne the ground-state collective wave functions are
well inside the prolate wells indicating that both systems
are dominated by prolate deformations in the considered
spin range. The average deformation values are 0.39 b,
0.58 b, 0.59 b and 0.58 b for the 0+

1 , 2
+
1 , 4

+
1 and 6+

1 states
in 20Ne, while the corresponding values in 22Ne are 0.39 b,
0.56 b, 0.61 b and 0.63 b. In the nucleus 24Ne, the configu-
ration mixing calculation provides a spherical 0+

1 instead
of the oblate absolute minimum found in its AMPPES.
An almost spherical 2+

1 state (qI=2,σ=1
20 = −0.08 b) is also

found in this nucleus. On the other hand, a band crossing
takes place for the state 4+

1 and the collective wave func-
tion becomes prolate deformed with qI=4,σ=1

20 = 0.39 b
and qI=6,σ=1

20 = 0.79 b. Similar results have recently been
found [25] in the N = 14 system 26Mg. The experimental
spectroscopic quadrupole moment of the lowest 2+ state
in 26Mg is −13.5 efm2 [32] indicating that this is a pro-
late state. However, the low excitation energy of the 0+

2
in 26Mg (3.588 MeV) compared with the same quantity in
24Mg (6.432 MeV) clearly indicates strong shape coexis-
tence between oblate and prolate solutions. Unlike 26Mg,
there is not experimental information concerning the
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spectroscopic quadrupole moment of the lowest 2+ state
in 24Ne but again the experimental excitation energies of
the 0+

2 in 24Ne and 26Ne (4.764 MeV and 3.691 MeV,
respectively) are significantly lower than the 6.235 MeV
measured in 22Ne [32,33] pointing towards a strong shape
coexistence in the ground state of the former nuclei. Our
results predict a strong shape coexistence for the 0+

1 and
2+
1 states in 24Ne as well as for the 0+

1 states in 26Ne and
28Ne that manifest itself in the 0+

2 excitation energies of
3.509 and 3.005 MeV for 24,26Ne, respectively.

The 0+
1 wave functions in both 26Ne and 28Ne show a

great admixture of prolate and oblate configurations that
leads to spherical ground states on the average. On the
other hand, for Iπ ≥ 2+ the collective wave functions in
these two nuclei become prolate deformed with deforma-
tion values of 0.34 b, 0.59 b and 0.94 b for the states
2+
1 , 4

+
1 and 6+

1 in 26Ne, while the corresponding values in
28Ne are 0.26 b, 0.93 b and 1.04 b. Our results do not fully
support the suggestion of [19] concerning the magicity of
N = 16 in neutron-rich light nuclei. It is true that 26Ne
has a spherical ground state, but the deformation of the
2+
1 is too strong as to be considered a vibrational state.
Similar results are also found in ref. [25] for the N = 16
nucleus 28Mg.

The 0+
1 wave function in 30Ne also shows a significant

admixture of the oblate and prolate configurations and,
as a consequence, the deformation in the ground state is
reduced to 0.16 b that represents one third of the value
corresponding to the absolute minimum in the Iπ = 0+

AMPPES. This clearly shows that, as in 32Mg [13,15,25],
the deformation effects in 30Ne are the result of a subtle
balance between the zero-point corrections associated with
the restoration of the rotational symmetry and the fluc-
tuations in the collective parameters (in our case the ax-
ially symmetric quadrupole moment). From the compari-
son with the value of qI=0,σ=1

20 = 0.43 b already found [15,
25] in 32Mg we conclude that dynamical deformation ef-
fects are strongly suppressed in 30Ne as could have been
forecasted from the different AMPPES topology we have
already seen in fig. 5. On the other hand, the 2+

1 , 4
+
1 and

6+
1 wave functions in 30Ne are inside the prolate wells and
the average deformations of 0.83 b, 0.93 b and 0.94 b are
very close to the ones found in 32Mg.

In both 32Ne and 34Ne, the ground-state collective
wave functions become prolate. The dynamical deforma-
tion values for the 0+

1 , 2
+
1 , 4

+
1 and 6+

1 in 32Ne are 0.42 b,
0.90 b, 0.98 b, 1.05 b, while the corresponding values in
32Ne are 0.69 b, 0.94 b, 0.99 b and 1.0 b. All these values
show the stability of deformation effects in neon isotopes
as we move towards the drip line.

Here, we will make a few comments on the AMP-GCM
results in the nuclei 32Ne and 34Ne when the basis is in-
creased from Nshell = 11 to Nshell = 12. The effect on
the projected energy landscapes can be seen in the cor-
responding panels of fig. 4 where Nshell = 12 curves are
plotted as dashed lines. The results with Nshell = 12 and
Nshell = 11 only show very small differences at large ab-
solute values of q20. On the other hand, in the region of
physical significance (−0.7 b ≤ q20 ≤ 1.2 b) the results are

Table 1. Ground-state spectroscopic quadrupole moments
Qspec(I, σ = 1) in efm2 for Iπ = 2+, 4+ and 6+ in the nu-
clei 20–34Ne. Experimental data [32,34] are shown in boldface,
whereas Shell Model results [35,36] are shown in brackets. For
details see the main text.

I 20Ne 22Ne 24Ne 26Ne

2 −16.75 −14.64 2.02 −7.88
− 23 −17 (−2.77) (−10.56)

4 −21.52 −21.03 −11.62 −16.98
6 −23.29 −23.01 −27.01 −28.78
I 28Ne 30Ne 32Ne 34Ne

2 −10.05 −15.80 −17.49 −15.81
(−17.8) (−16.40) (−20.00) (−16.56)

4 −26.11 −22.21 −22.25 −21.38
6 −29.83 −24.82 −26.23 −23.52

practically indistinguishable. Since this range of q20 values
is the one where the collective dynamics is concentrated
(i.e, the tails of the collective wave functions go to zero
outside this range) we do not expect big changes in the
excitation energies. For the 32Ne nucleus, it turns out that
the excitation energies of all the members of the ground-
state rotational band obtained in the Nshell = 12 calcula-
tion are around 7 keV higher than the ones in the Nshell =
11 case, i.e., only the 0+

1 state has been pushed down. For
34Ne the average shift is 6 keV. As a consequence, the
transition gamma-ray energies remain unaltered by the
increase of the basis size. On the other hand, the excita-
tion energies (with respect to the true ground state) of the
members of the excited rotational band decrease on the av-
erage 40 keV in 32Ne and 32 keV in 34Ne and, therefore, as
in the previous case, the intra-band gamma-ray energies
remain the same. From these results we conclude that our
calculations are well converged in terms of the basis size.

Coming back to the discussion of our results, in ta-
ble 1 we present our results for the ground-band spec-
troscopic quadrupole moments. A very good agreement
is observed between the calculated spectroscopic values
of the 2+

1 states in 20Ne and 22Ne and the experimen-
tal values (shown in boldface) for these nuclei which are
−23 efm2 [34] and −17 efm2 [32], respectively. In addition,
our results are consistent with the Shell Model predictions
(shown in brackets) for the spectroscopic quadrupole mo-
ments of the 2+

1 states [35,36]. Obviously, the discrepan-
cies are larger for the shape coexistent nuclei 24–28Ne, It
is also worth mentioning here that the value obtained for
the spectroscopic quadrupole moment of the 2+

1 state in
30Ne (−15.80 efm2) is only slightly smaller than the sim-
ilar quantity in 32Mg (−19.50 efm2).

In fig. 8 we compare the results of the AMP-GCM two-
neutron separation energies S2N = E0+

1
(N − 2)−E0+

1
(N)

with the corresponding mean-field results (see sect. 3.1)
and also with the available experimental values taken from
refs. [37,38]. The AMP-GCM improves the S2N of 26Ne
as compared to the mean-field results and also makes the
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to experimental values taken from refs. [37,38] and the QMCD
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nucleus 32Ne bound (unlike the mean-field prediction) in
good agreement with the experimental results [28–30]. On
the other hand, the nucleus 34Ne becomes unstable against
two-neutron emission in the AMP-GCM approach. Our re-
sults are very similar to the ones predicted in the frame-
work of the QMCD [39,40] specially around N = 20 but
we differ in the prediction concerning 34Ne. Finally, it is
worth mentioning that the AMP-GCM binding energy is
the sum of the mean-field binding energy of the intrin-
sic state plus the energy gain due to the restoration of
the rotational symmetry plus the energy gain due to the
configuration mixing. Therefore, the differences in S2N ob-
tained in the AMP-GCM and the mean field are due to
the last two contributions. The analysis of those contri-
butions shows that the rotational energy correction is the
main responsible for the differences observed in S2N and,
therefore, is the ingredient needed to make 32Ne stable.

In fig. 9 the excitation energies of the 2+
1 and 4+

1 states
and the B(E2, 0+

1 → 2+
1 ) transition probabilities obtained

in the AMP-GCM are compared with the available ex-
perimental values and also with the predictions of the
QMCD [39,40]. Concerning the B(E2, 0+

1 → 2+
1 ) tran-

sition probabilities we clearly see, from panel a), that the
agreement with the available experimental data [32,33,
41–44] is rather satisfactory and in most cases (with the
exception of 26Ne where our prediction appears a little bit
low) our results stay within the experimental error bars.
On the other hand, our results are also consistent with the
predictions of the QMCD [39,40]. Our results, although
not as good as the QMCD ones, are very satisfactory con-
sidering that the parameters of the Gogny force have not
been fitted to the region and/or the physics of quadrupole
collectivity and also that no effective charges have been
used in our calculations of the transition probabilities.

Our results for the 2+
1 excitation energies agree well

with the experiment in 20Ne and 22Ne [32,33] and also
with the theoretical result of Otsuka in 34Ne. For the
other isotopes our 2+ excitation energies are always higher
than experiment and the QMCD predictions. The same
happens for the 4+ excitation energies. The disagreement
between our results and the experiment (or the QMCD
predictions) can be attributed to the fact that the nu-
clei involved are nice examples of shape coexistence. In
the presence of shape coexistence the quadrupole degree
of freedom probably is not enough to describe accurately
the observables and other degrees of freedom like triaxi-
ality or pairing fluctuations should be included. However,
and based on the nice agreement between our electromag-
netic transition probabilities and the experimental ones,
we can conclude that the quadrupole degree of freedom is
the main ingredient in the physical picture of the neutron-
rich neon isotopes.

4 Conclusions

We have performed Angular Momentum Projected Gen-
erator Coordinate Method calculations with the Gogny
interaction D1S and the mass quadrupole moment as
generating coordinate in order to describe quadrupole
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collectivity in the even-even nuclei 20–34Ne. The lighter
isotopes 20Ne and 22Ne as well as the heavier ones
32Ne and 34Ne are well deformed in their ground states,
whereas the other isotopes are either spherical (24Ne
and 26Ne) or slightly deformed like 28Ne and 30Ne. The
later isotope is less deformed in its ground state than
its isotone 32Mg. The two-neutron separation energies
compare well with experimental data and show that 32Ne
is bound. Moreover, the B(E2) transition probabilities
from the ground state to the 2+ state are well reproduced
in all the cases. Only the 2+ excitation energies result to
be too high as compared to the experiment for the shape
coexistent isotopes.

This work has been supported in part by the DGI, Ministerio
de Ciencia y Tecnoloǵıa (Spain) under project BFM2001-0184.
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